
 
 

S​UPPORT​ S​YSTEMS​ ​FOR​ M​ODERN​ C​ODE​ R​EVIEWS​ (I) 
 

This briefing reports scientific evidence of      
23 studies that investigate support systems      
related to the usefulness, sentiment, order,      
and monitoring of modern code reviews.  

 

FINDINGS 
Determining the usefulness of code reviews. 
A study of three Github hosted projects, developed a         
taxonomy of review comments [RC1, RC3]. The       
categories are comments regarding code correctness      
(style checking, defect detecting, code testing), pull       
request decision making (value affirming, solution      
disagreeing, further questioning), project    
management (road-map managing, reviewer    
assigning, convention checking), and social interaction      
(politely responding, contribution encouraging). The     
researchers trained a classifier and categorized 147K       
comments, finding that inexperienced contributors     
tend to produce code that passes tests while still         
containing issues, and external contributors break      
project conventions in their early contributions.  
In another study, researchers analyzed the usefulness       
of 1,116 review comments (a manual process that has         
also been attempted to automatize [RC9]) in a        
commercial system [RC8]. They marked a comment as        
useful if it triggered a code change within its vicinity          
(up to 10 lines) and analyzed features of the review          
comment pertaining to its content and author. The        
results indicate that useful comments share more       
vocabulary with the changed code, contain relevant       
code elements, and are written by more experienced        
reviewers.  
A study of 2,817 review comments from the        
Openstack project found that only about 14% of        
comments are related to software design [RC2]; of        
which 73% provided suggestions to address the       
concerns, indicating that they were useful.  
A study at Microsoft investigated the characteristics       
of useful code reviews by interviewing seven       
developers [RC6]. The study found that the most        
“useful” comments identify functional issues,     
scenarios where the reviewed code fails, and suggest        
API usage, design patterns or coding conventions.       
“Useless” comments ask how an implementation      
works, praise code, or point to work needed in the          
future. Armed with this knowledge, the researchers       
trained a classifier that achieved 86% precision and        
93% recall in identifying useful comments. Applying       
the classifier on 1.5M review comments, they found        
that: (a) reviewer experience with the code base        
correlates with usefulness of comments, suggesting      
that reviewer selection is crucial, (b) the smaller the         
changeset, the more useful the comments, and (c) a         
comment usefulness density metric can be used to        
pinpoint areas where code reviews are ineffective       
(e.g. configuration and build files).  
Criticism of the above pure statistical, syntactic       
approaches arose as the actual meaning of comments        
is not analyzed [RC7]. Linguists could help to provide         
guidelines for good writing practices, develop tools       
such that these good writing practices are enforced,        
and help to identify rationales in review comments        
that could be collected for documentation purposes. 
What we think: The conducted research to eliminate        
vagueness and determine characteristics of usefulness      
is quite useful as it helps to determine objective         
criteria that can be operationalized to check       
usefulness of comments automatically. This opens the       
door to support systems that could provide feedback        
while writing a comment or allow the analysis of large          
data sets to understand the consequences of good        
and bad review comments.  

Analyzing sentiments, attitudes and intentions in      
code reviews. 
Understanding review comments in greater detail      
could lead to systems that support reviewers in both         
formulating and interpreting the intentions of code       
reviews. A study on Android code reviews       
investigated the communicative goals of questions      
stated in reviews [RC10], identifying five different       
intentions: suggestions (where action requests are      
formulated as questions), requests for information,      
attitudes and emotion (like criticism, anger, surprise),       
description of a hypothetical scenario, and rhetorical       
questions. The study suggests that the purpose of        
questions in reviews is not solely to obtain        
information.  
Another study looked in particular at the sentiments        
expressed in reviews [RC5] and developed a classifier        
that flags comments as positive, neutral or negative        
with 83% accuracy. Finally, a study on the Chromium         
project found that code reviews with lower       
inquisitiveness, higher sentiment (positive or     
negative) and lower syntactic complexity were more       
likely to miss vulnerabilities in the code [RC4]. 
What we think: If we consider comments in code         
reviews as means to convey knowledge, it is        
important to study how different forms of expression        
support or detract from effective communication.      
People communicate in subtle ways, using sarcasm       
and irony that are notoriously hard to detect for         
automated systems. 
Optimizing the order of reviews. 
Code reviewers often need to prioritize which       
changes they should focus on reviewing first.       
Researchers propose to base the review decision on        
the likelihood that a particular change will eventually        
be merged [RP2]. They suggest using 34 features,        
grouped into five dimensions (code, file history,       
owner experience, collaboration network, and     
commit text) and train a random forest machine        
learning model.  
The evaluation on three open source projects       
suggests that their approach is better than a random         
guess. PRioritizer is a pull request prioritization       
approach that, similar to a priority inbox, sorts        
requests that require immediate attention to the top        
[RP3]. The decision on priority is based on historical         
data to predict the likelihood that a pull request will          
be updated in the near future. Users of the system          
reported that they liked the prioritization, miss       
however insights on the rationale for the particular        
pull requests. 
Other studies looked especially at the historic       
proneness of files to defects to direct review efforts.         
A study suggests combining bug-proneness,     
estimated review cost, and the state of a file (newly          
developed or changed) to prioritize files to review        
[RP4]. The evaluation, performed on two open source        
projects, indicates that the approach leads to more        
effective reviews.  
A similar approach attempts to classify files as        
potentially defective, based on historic instances of       
detected faults and features on code ownership, and        
change request and source  code metrics [RP5]. 
What we think: In scenarios where dedicated code        
reviewers, so called integrators, need to decide what        
to review next, the proposed approaches might       
provide some support. Nevertheless, there exists still       
very little evidence on the effectiveness of the        
suggested prioritization techniques in industry-grade     
environments as the evaluations have been performed       
in simulations or in the context of small user studies. 
Monitoring review performance and quality.     
Researchers have proposed to quantitatively study      
the code reviews process, based on traces left in         
software repositories [RA2]. Without having access to       

any code review tool, they analyzed changelog files,        
commit records, and attachments and flags in Bugzilla        
records to monitor the size of the review process         
(actors involved and actions performed), the effort       
involved (number of iterations), and process delay       
(delay between request and review).  
A similar study on the Xen and Netdev projects         
focused on review messages wherein changes are       
first reviewed through communication is a mailing list        
[RA4]. They developed a series of metrics to        
characterize code review activity, effort, and delays       
[RA1], which are also provided through a dashboard        
that shows the evolution of the review process over         
time [RA3]. 
Another study looked at code reviews managed with        
Gerrit and proposed metrics to measure velocity and        
quality of reviews [RA5].  
Similar metrics, such as code churn, modified source        
code files and program complexity, were used to        
analyze reviewer effort and contribution in the       
Android open source project [RA7].  
Other tools to analyze Gerrit review data are ReDa,         
that provides reviewer, activity and contributor      
statistics [D21], and Bicho, that models code reviews        
as information from an issue tracking system,       
allowing to query review statistics with standard SQL        
queries [D23]. Finally, Codeflow Analytics aggregates      
and synthesizes code review metrics (over 200) and        
was developed and evaluated at Microsoft [D22]. The        
tool provides access to analysis reports via Excel        
templates but also through more powerful SQL       
queries.  
What we think: Monitoring and analyzing the review        
process over time can be used to improve the review          
process, e.g., by providing training to inexperienced       
reviewers and finding bottlenecks in tooling or       
overworked reviewers. 
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