

S​UPPORT​ S​YSTEMS​ ​FOR​ M​ODERN​ C​ODE​ R​EVIEWS​ (I)

This briefing reports scientific evidence of
23 studies that investigate support systems
related to the usefulness, sentiment, order,
and monitoring of modern code reviews.

FINDINGS
Determining the usefulness of code reviews.
A study of three Github hosted projects, developed a
taxonomy of review comments [RC1, RC3]. The
categories are comments regarding code correctness
(style checking, defect detecting, code testing), pull
request decision making (value affirming, solution
disagreeing, further questioning), project
management (road-map managing, reviewer
assigning, convention checking), and social interaction
(politely responding, contribution encouraging). The
researchers trained a classifier and categorized 147K
comments, finding that inexperienced contributors
tend to produce code that passes tests while still
containing issues, and external contributors break
project conventions in their early contributions.
In another study, researchers analyzed the usefulness
of 1,116 review comments (a manual process that has
also been attempted to automatize [RC9]) in a
commercial system [RC8]. They marked a comment as
useful if it triggered a code change within its vicinity
(up to 10 lines) and analyzed features of the review
comment pertaining to its content and author. The
results indicate that useful comments share more
vocabulary with the changed code, contain relevant
code elements, and are written by more experienced
reviewers.
A study of 2,817 review comments from the
Openstack project found that only about 14% of
comments are related to software design [RC2]; of
which 73% provided suggestions to address the
concerns, indicating that they were useful.
A study at Microsoft investigated the characteristics
of useful code reviews by interviewing seven
developers [RC6]. The study found that the most
“useful” comments identify functional issues,
scenarios where the reviewed code fails, and suggest
API usage, design patterns or coding conventions.
“Useless” comments ask how an implementation
works, praise code, or point to work needed in the
future. Armed with this knowledge, the researchers
trained a classifier that achieved 86% precision and
93% recall in identifying useful comments. Applying
the classifier on 1.5M review comments, they found
that: (a) reviewer experience with the code base
correlates with usefulness of comments, suggesting
that reviewer selection is crucial, (b) the smaller the
changeset, the more useful the comments, and (c) a
comment usefulness density metric can be used to
pinpoint areas where code reviews are ineffective
(e.g. configuration and build files).
Criticism of the above pure statistical, syntactic
approaches arose as the actual meaning of comments
is not analyzed [RC7]. Linguists could help to provide
guidelines for good writing practices, develop tools
such that these good writing practices are enforced,
and help to identify rationales in review comments
that could be collected for documentation purposes.
What we think: The conducted research to eliminate
vagueness and determine characteristics of usefulness
is quite useful as it helps to determine objective
criteria that can be operationalized to check
usefulness of comments automatically. This opens the
door to support systems that could provide feedback
while writing a comment or allow the analysis of large
data sets to understand the consequences of good
and bad review comments.

Analyzing sentiments, attitudes and intentions in
code reviews.
Understanding review comments in greater detail
could lead to systems that support reviewers in both
formulating and interpreting the intentions of code
reviews. A study on Android code reviews
investigated the communicative goals of questions
stated in reviews [RC10], identifying five different
intentions: suggestions (where action requests are
formulated as questions), requests for information,
attitudes and emotion (like criticism, anger, surprise),
description of a hypothetical scenario, and rhetorical
questions. The study suggests that the purpose of
questions in reviews is not solely to obtain
information.
Another study looked in particular at the sentiments
expressed in reviews [RC5] and developed a classifier
that flags comments as positive, neutral or negative
with 83% accuracy. Finally, a study on the Chromium
project found that code reviews with lower
inquisitiveness, higher sentiment (positive or
negative) and lower syntactic complexity were more
likely to miss vulnerabilities in the code [RC4].
What we think: If we consider comments in code
reviews as means to convey knowledge, it is
important to study how different forms of expression
support or detract from effective communication.
People communicate in subtle ways, using sarcasm
and irony that are notoriously hard to detect for
automated systems.
Optimizing the order of reviews.
Code reviewers often need to prioritize which
changes they should focus on reviewing first.
Researchers propose to base the review decision on
the likelihood that a particular change will eventually
be merged [RP2]. They suggest using 34 features,
grouped into five dimensions (code, file history,
owner experience, collaboration network, and
commit text) and train a random forest machine
learning model.
The evaluation on three open source projects
suggests that their approach is better than a random
guess. PRioritizer is a pull request prioritization
approach that, similar to a priority inbox, sorts
requests that require immediate attention to the top
[RP3]. The decision on priority is based on historical
data to predict the likelihood that a pull request will
be updated in the near future. Users of the system
reported that they liked the prioritization, miss
however insights on the rationale for the particular
pull requests.
Other studies looked especially at the historic
proneness of files to defects to direct review efforts.
A study suggests combining bug-proneness,
estimated review cost, and the state of a file (newly
developed or changed) to prioritize files to review
[RP4]. The evaluation, performed on two open source
projects, indicates that the approach leads to more
effective reviews.
A similar approach attempts to classify files as
potentially defective, based on historic instances of
detected faults and features on code ownership, and
change request and source code metrics [RP5].
What we think: In scenarios where dedicated code
reviewers, so called integrators, need to decide what
to review next, the proposed approaches might
provide some support. Nevertheless, there exists still
very little evidence on the effectiveness of the
suggested prioritization techniques in industry-grade
environments as the evaluations have been performed
in simulations or in the context of small user studies.
Monitoring review performance and quality.
Researchers have proposed to quantitatively study
the code reviews process, based on traces left in
software repositories [RA2]. Without having access to

any code review tool, they analyzed changelog files,
commit records, and attachments and flags in Bugzilla
records to monitor the size of the review process
(actors involved and actions performed), the effort
involved (number of iterations), and process delay
(delay between request and review).
A similar study on the Xen and Netdev projects
focused on review messages wherein changes are
first reviewed through communication is a mailing list
[RA4]. They developed a series of metrics to
characterize code review activity, effort, and delays
[RA1], which are also provided through a dashboard
that shows the evolution of the review process over
time [RA3].
Another study looked at code reviews managed with
Gerrit and proposed metrics to measure velocity and
quality of reviews [RA5].
Similar metrics, such as code churn, modified source
code files and program complexity, were used to
analyze reviewer effort and contribution in the
Android open source project [RA7].
Other tools to analyze Gerrit review data are ReDa,
that provides reviewer, activity and contributor
statistics [D21], and Bicho, that models code reviews
as information from an issue tracking system,
allowing to query review statistics with standard SQL
queries [D23]. Finally, Codeflow Analytics aggregates
and synthesizes code review metrics (over 200) and
was developed and evaluated at Microsoft [D22]. The
tool provides access to analysis reports via Excel
templates but also through more powerful SQL
queries.
What we think: Monitoring and analyzing the review
process over time can be used to improve the review
process, e.g., by providing training to inexperienced
reviewers and finding bottlenecks in tooling or
overworked reviewers.

References

ID Title Link

RC1

Automatic Classification Of Review Comments In Pull-Based

Development Model
https://whystar.github.io/res/paper/seke2017.pdf

RC2 An Empirical Study Of Design Discussions In Code Review http://rebels.ece.mcgill.ca/papers/esem2018_elzanaty.pdf

RC3

What Are They Talking About? Analyzing Code Reviews In Pull-Based

Development Model
https://whystar.github.io/res/paper/jcst2017.pdf

RC4

Natural Language Insights From Code Reviews That Missed A

Vulnerability: A Large Scale Study Of Chromium https://nuthanmunaiah.github.io/static/assets/natural-language-insights.pdf

RC5

Senticr: A Customized Sentiment Analysis Tool For Code Review

Interactions http://amiangshu.com/papers/senticr-ase.pdf

RC6 Characteristics Of Useful Code Reviews: An Empirical Study At Microsoft https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bosu2015useful.pdf

RC7 Code Review Comments: Language Matters https://arxiv.org/pdf/1803.02205

RC8

Predicting Usefulness Of Code Review Comments Using Textual

Features And Developer Experience https://arxiv.org/pdf/1807.04485

RC9 Assessing Mcr Discussion Usefulness Using Semantic Similarity

https://www.researchgate.net/profile/Patanamon_Thongtanunam/publication/289429518_Asse
ssing_MCR_Discussion_Usefulness_Using_Semantic_Similarity/links/57be6d8908aeda1ec3862ca
7/Assessing-MCR-Discussion-Usefulness-Using-Semantic-Similarity.pdf

RC10 Communicative Intention In Code Review Questions https://felipeebert.github.io/publications/icsme2018.pdf

RA1 Using Metrics To Track Code Review Performance Please contact one of the authors of this evidence briefing to receive a copy of this paper.

RA2 Code Review Analytics: Webkit As Case Study
https://www.researchgate.net/profile/Gregorio_Robles/publication/289147353_Code_Review_
Analytics_WebKit_as_Case_Study/

RA3 Software Development Analytics For Xen: Why And How
https://www.researchgate.net/publication/326337424_Software_Development_Analytics_for_X
en_Why_and_How

RA4

Characterization of the Xen Project Code Review Process: An Experience

Report Please contact one of the authors of this evidence briefing to receive a copy of this paper.

RA5 Metrics For Gerrit Code Reviews http://ceur-ws.org/Vol-1525/paper-03.pdf

RA7

Mining Peer Code Review System For Computing Effort And

Contribution Metrics For Patch Reviewers Please contact one of the authors of this evidence briefing to receive a copy of this paper.

D21

Reda: A Web-Based Visualization Tool For Analyzing Modern Code

Review Dataset http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.7617&rep=rep1&type=pdf

D22

Lessons Learned From Building And Deploying A Code Review Analytics

Platform http://cabird.com/pubs/bird2015cfa.pdf

D23 Analyzing Gerrit Code Review Parameters With Bicho http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.672.8656&rep=rep1&type=pdf

RP2 Early Prediction Of Merged Code Changes To Prioritize Reviewing Tasks

http://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=4991&context=sis_research

RP3 Automatically Prioritizing Pull Requests

https://pure.tudelft.nl/portal/files/67261622/vanderveenMSR2015.pdf

RP4

0-1 Programming Model-Based Method For Planning Code Review Using

Bug Fix History http://se.cite.ehime-u.ac.jp/~aman/pdf/IWESEP2013.pdf

RP5

A case study on machine learning model for code review expert system

in software engineering

https://annals-csis.org/proceedings/2017/drp/pdf/536.pdf

http://rebels.ece.mcgill.ca/papers/esem2018_elzanaty.pdf
https://nuthanmunaiah.github.io/static/assets/natural-language-insights.pdf
http://amiangshu.com/papers/senticr-ase.pdf
https://arxiv.org/pdf/1803.02205
https://www.researchgate.net/profile/Patanamon_Thongtanunam/publication/289429518_Assessing_MCR_Discussion_Usefulness_Using_Semantic_Similarity/links/57be6d8908aeda1ec3862ca7/Assessing-MCR-Discussion-Usefulness-Using-Semantic-Similarity.pdf
https://www.researchgate.net/profile/Patanamon_Thongtanunam/publication/289429518_Assessing_MCR_Discussion_Usefulness_Using_Semantic_Similarity/links/57be6d8908aeda1ec3862ca7/Assessing-MCR-Discussion-Usefulness-Using-Semantic-Similarity.pdf
https://www.researchgate.net/profile/Patanamon_Thongtanunam/publication/289429518_Assessing_MCR_Discussion_Usefulness_Using_Semantic_Similarity/links/57be6d8908aeda1ec3862ca7/Assessing-MCR-Discussion-Usefulness-Using-Semantic-Similarity.pdf
https://www.researchgate.net/profile/Gregorio_Robles/publication/289147353_Code_Review_Analytics_WebKit_as_Case_Study/
https://www.researchgate.net/profile/Gregorio_Robles/publication/289147353_Code_Review_Analytics_WebKit_as_Case_Study/
https://www.researchgate.net/publication/326337424_Software_Development_Analytics_for_Xen_Why_and_How
https://www.researchgate.net/publication/326337424_Software_Development_Analytics_for_Xen_Why_and_How
http://ceur-ws.org/Vol-1525/paper-03.pdf
https://drive.google.com/open?id=1zl9KO67t21fdqextllKk2skWRR4xjuj0
https://drive.google.com/open?id=1zl9KO67t21fdqextllKk2skWRR4xjuj0
http://se.cite.ehime-u.ac.jp/~aman/pdf/IWESEP2013.pdf

