
The Big Picture of
Continuous Everything

Eriks Klotins

Everyone Wants to Get Better
At Delivering Software

2

From Plan-driven, to Agile, to Continuous

• Release time in years

• All project value (and risk) is
delivered at the end

• It may take years to identify
and fix a problem

• Relies on upfront process &
planning

From Plan-driven, to Agile, to Continuous

• Release time in years • Release every few weeks

• All project value (and risk) is
delivered at the end

• Value is delivered in chunks
throughout the project

• It may take years to identify
and fix a problem

• It may take a few weeks to
discover and fix a problem

• Relies on upfront process &
planning

• Relies on flexible
collaboration and a
customer in the room

From Plan-driven, to Agile, to Continuous

• Release time in years • Release every few weeks • Release quickly and ASAP

• All project value (and risk) is
delivered at the end

• Value is delivered in chunks
throughout the project

• Value is delivered continuously
in small increments

• It may take years to identify
and fix a problem

• It may take a few weeks to
discover and fix a problem

• Data enables rapid and
precise course adjustments

• Relies on upfront process &
planning

• Relies on automation,
telemetry, and frequent
customer feedback 5

• Relies on flexible
collaboration and a
customer in the room

Continuous
Engineering

State-of-the-Art
Continuous Software Engineering

State-of-practice

Recurring challenges

● Superficial goals like “speed”, “flexibility” and “efficiency” are not useful to drive any
systematic changes

○ E.g. efficiency may have different meaning for different stakeholders, speed may be less
relevant in slow-moving markets, continuous data sharing may be out of question for
systems behind an air air-gap.

○ More {flexible|frequent|efficient|speedy} software delivery is implicitly assumed to be an
improvement.

● Usually, improving one aspect happens at the expense of another. Few consider such
tradeoffs.

● The goals should be aligned, measured and shared across the whole organization.

Challenge 1 - Determining the adoption goals

22

Challenge 2 - Dealing with Conway's law
● Software architectures and processes tend to follow the underlying organizational

structures

● Sub-optimal hierarchical structures and organizational conflict lead to functional silos
(e.g. strategy, product planning, R&D, QA, Sales, Operations) and monolithic software.

● Functional silos focus on their own “slice” and optimize for their KPIs without considering
the whole picture.

● Any efforts to improve and automate the engineering process are limited to a one silo.
Breaking silos and connecting the pipeline requires changing the organizational and
software structures

23

Challenge 3 - Internal constraints
Driving changes in large, old, and “stale” organizations is inherently difficult

● Culture and attitudes play a significant role

● Management plays an important role

● Legacy products, processes, and structures slow down changes

● Business models may not be compatible

● Politics play a role

In principle, no different than driving any other enterprise transformation

Challenge 4 - External constraints
Having an end-to-end delivery pipeline may not be possible for all organizations and products
due to:

● The lack of incentives to upgrade

● High risk of upgrading

● Downstream dependencies on products/vendors/processes

● Upstream dependencies on vendors/partners

● Compliance requirements

● Limited control over the software life-cycle

A sustained pace
of small improvements beats

occasional big changes

Contributions towards the future
💡 Implement structures and systems encouraging and supporting small improvements.

- Collaboration, delegation, empowerment

- Flexible processes

💡 Implement data-driven approaches for decision support
- Measurable goals

- Metrics, KPIs

- Data pipelines, data warehouses

- Broad access datasets, use of data and data analysis

- Data literacy

💡 If continuous X is a relevant practice to improve towards a specific goal, implement it

💡 Measure and repeat

