—————

Rolling in the Debt:
From Technical Debt
To Asset Management

Dr. Ehsan Zabardast

o)

TECHiING

- SERL Sweden

LEADING SOFTWARE ENGINEERING

Dr. Javier Gonzalez Huerta Prof. Dr. Tony Gorschek

2 SERL Sweden

LEADING SOFTWARE ENGINEERING

.

| SGPER

MULTI PURPOSE

IDEAL FOR
m GLASS

® PLASTIC

8 METAL

® WO0D

® RUBBER

.
LEATHER - SUPER
® PORCELAIN - GLUE

20g

"movlum:.wumm

\
|
|
i,.

l. “’

i
. .) -
“ ’ | .

Fa a

Technical Debt refers to the long-term cost and inefficiencies that
result from taking shortcuts or suboptimal solutions in software development,
which require future refactoring or maintenance.

Technical Debt
In Theory

Total
Tech
Debt

Time

Figures from: https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt

Technical Debt

In Theory

Total
Tech
Debt

Time

Total
Tech
Debt

" Debt overflow
- glerﬂ

_________________ \ - - - Debt Ceiling

Cleanup! \

________________ Debt Bageline

>

Figures from: https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt

Technical Debt

In Theory

Total
Tech
Debt

Time

Total
Tech
Debt

" Deb

~ alert!

t overflow

Total

- - - Debt Ceiling Tech
Debt

Cleanup! \

Debt Bageline

Figures from: https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt

>

- Debt Ceiling

_____________________ Debt Bageline

Time

>

Technical Debt

In Theory

Total
Tech
Debt

Time

Total
Tech
Debt

~ alert!

N A

" Debt overflow |

Cleanup! \

Debt Bageline

Figures from: https://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt

>

Total

————————————————— - - - Debt Ceiling Tech

Debt

Slow(er)

1 &

| Expensive

___________________ - Debt Ceiling

_____________________ Debt Bageline
— >

Time

Technical Debt =
In Practice , SPNAKGUDS,

_ A\®
~SHIVE

Apache Hive

The Apache Hive ™ is a distributed, fault-tolerant data warehouse system that enables analytics at a massive scale and facilitates reading, writing, and managing
petabytes of data residing in distributed storage using SQL.

Hive

N\
Sona rQU be\\ Maintainability Overview @

500/7,728 files

Size: Code Smells Color: Maintainability Rating [1A [1B [JC [ID [IE

Zoom: 100%

S

12d

Technical Debt

8d 2h | | @
4d 1h i — Q Q
.3 S

4,000 6,000 8,000 10,000 12,000

Lines of Code

sonarqube\\\

\\.
T

Technical
Debt:
838 Day!

Hive

Maintainability Overview @

Technical Debt

16d

12d

8d 2h

4d 1h

2,000

GenVectorCode.java
Lines of Code: 3,327
Technical Debt: 19d

Code Smells: 643
Maintainability Rating: B

4,000

Size: Code Smells Color: Maintainability Rating

6,000

Lines of Code

8,000

10,000

500/7,728 files

1A OB OC [OD [IE

12,000

Zoom: 100%

Technical Debt
esearch

Current Research State:

Documentation Debt] Code Debt
* Value creation perspective

* Focus on architecture over code

Requirement Debt Defect Debt

* Advanced tools for technical debt management

* Continuous technical debt management

* Data-driven technical debt management Versioning Debt Test Debt

* Socio-technical factors in technical debt

* Cross-disciplinary collaboration

Process Debt Build Debt

* Proactive over reactive debt management

* Use of standardized metrics for technical debt People Debt Automation Test Debt

* Stakeholder involvement in technical debt decision Service Debt
Avgeriou, P., Ozkaya, I., Chatzigeorgiou, A., Ciolkowski, M., Ernst, N. A., Koontz, R. J., ... & Rios, N., de Mendonca Neto, M. G., & Spinola, R. O. (2018). A tertiary study on technical
Shull, F. (2023, May). Technical debt management: The road ahead for successful debt: Types, management strategies, research trends, and base information for
software delivery. In 2023 IEEE/ACM International Conference on Software Engineering: practitioners. Information and Software Technology, 102, 117-145.

Future of Software Engineering (ICSE-FoSE) (pp. 15-30). IEEE.

. Tools
Technical Debt Management

Research

105 112
13
2 1 1 1
. [— [— —
e xS e x X5 S
ecod c(\eﬂ‘ d\oé‘ Q@Q ((\30 95296 O
< N X2 &) xe & ° N)
oo e « ae’ \ 2 e «® o ®
o0 63980 o o> o®
In Form
(a) Tnputs (b) Input Formats

Biazotto, J. P., Feitosa, D., Avgeriou, P., & Nakagawa, E. Y. (2023). Technical debt management automation: State of the
art and future perspectives. Information and Software Technology, 107375.

. Tools
Technical Debt Management

Research

Architecture Debt

Usability Debt Design Debt

1 0 5 1 1 2 Documentation Debt Code Debt
Requirement Debt
Versioning Debt
1 3 Process Debt Build Debt
People Debt Automation Test Debt
Service Debt
2 1 1 1 3 5 5
/B s = = ' 1 1 1 1
de (\'(-6 66\ Q‘(\ (\‘(.‘J e‘: -—-———_——— —
e o 4 o® o0 9539 I o « N & R B
Ol 00(0 « X e(\(ﬂ Q’C‘)‘ e @ (o8 \ v ('bQ‘(\ &2 +
X C06 e’(\d c_,& 6506 5(.)\&(°
ae®
(a) Inputs (b) Input Formats

Biazotto, J. P., Feitosa, D., Avgeriou, P., & Nakagawa, E. Y. (2023). Technical debt management automation: State of the
art and future perspectives. Information and Software Technology, 107375.

Defect Debt

Test Debt

. Tools
Technical Debt Management

o - O
o~ & QO -0 O
O & .0 o R
D& O & . O
> XN\ O X! (8) "N
WO @ "'010 00 ¢ & <

\b@&i@@@} o O &ofeQ,g\iQ@@Q&A S (0((\
code 7520 5 6 5 1 0 O 82
design 49 20 7 4 5 1 2 0 56
architectural 24 16 3 3 2 0 0 O 28
satd 13 0 1 1 0 2 0 1 14
test 6 6 2 2 1 0 0 O 7
build 1 0 0 0 0 0 o0 o" 1
documentation 1 0 0 0 O O O O 1
requirements 1 1 1 1 0 0 0 O 1
9o g 7 3 2

26

Biazotto, J. P, Feitosa, D., Avgeriou, P., & Nakagawa, E. Y. (2023). Technical debt management automation: State
of the art and future perspectives. Information and Software Technology, 107375.

111

. Tools
Technical Debt Management

O 'O:
o~ & O -0 O
0 & .o "I
NI S\ O & . XY
> 2 XN\ O :\. \o "N

00

<O @
'$>°§<°°®6 & 3 <°°§°Q6§Q@‘Q&A o°®&
code 7520 5 6 5 1 0 O 82
design 49 20 7 4 5 1/2 0 56
architectural 24 16 3 3 2 0 0 O 28
satd 13 0 1 1 0 2 0 1 14
test 6 6 2 2 1 0 0 O 7
buld 7 0 0 0 0 0 0 o1
documentation 1 0 0 0 O O O O 1
requirements 1 1 1 1 0 0 0 O 1
9o g 7 3 2
26

Biazotto, J. P, Feitosa, D., Avgeriou, P., & Nakagawa, E. Y. (2023). Technical debt management automation: State
of the art and future perspectives. Information and Software Technology, 107375.

111

Technical Debt
Facts

 Technical debt is unavoidable!

* Virtually, you can’t get rid of technical
debt.

 Measuring technical debt is not
straightforward.

* Technical debt is contagious!

... SO What?

N
= Blog

Explore More

Events

Customer Enablement 5 Everything

aWs

~—"1

earn Partner Network AWS Marketplace
Solutions Pricin mentation art \' .
g Docu y

= & Career Advice

& Ay

Editions ¥

@
o
g~
(7]
Q
[,
g
(]

Blogs ¥

AWS Blog Home

ise Strategy Blog rm?
Aws Cloud Enterprise tra tion: TechniCEl Debt__-An Apt]::k‘ A N & N Everyone
e : i nt| Perm: L

The C|0-CF0 co\::\Z'Oelo\ in Enterprise strategy. Finance an
16D
by Mark Schwartz\ on

> share s canbe abit 100 The Controversial Truth about Tech

Sometimes We technolog

ward '
The term technical debt, attributed t0 Debt

' may be an exa
ence speech’, M
i st in the context of

AUTHQ RS
d Investme

Chelsea Troy »

Chelsea i a Staff Dat. i

focuseq o

En,
da
Wy
se days, genera: a
often thes al aspects of T, that Is, investm I S fo :
onfunction: ; | : o -
: o M ol Sminread - May 12,2024 technologists thrr incarcera glanguage

the internals of IT sy
capabilities. Such non’
difficult to explain and ju
siness.”

functional investmen

stify. The term tel

n the language of the bu:

technical depy)

ommunicate this need “i

a good way 10 5 . :
Of all the buzzwords invented by the software industry, Technical Debt is the
most frustrating. I know this will be controversial, and I can already hear RECENTARTICLES

clean architecture zealots fulminating. So let me explain my thoughts.

OCTOBER 5, 2004

CEo UpdatE. Bulldlﬂg tr ust in Al
Is key toa thr 1v Ing ‘(110 w IEdge

Med.\um Q Search ca\ Debt and Why we

i) Goldstein Follow
024

sef (YOS
2 Mar 1,202

10 min read ; ' |

BN Y

G TEC

=

jum 1616)

ster Brueghel ! (Belg
e paymentol ne Tithes by Piet e o technicy p It righ Bue agers wo,, Idn’t b
ineers can't stoP (a\\k'\“j5 abou;“;::o pattle it- be, bu¢ th Y done Never 8et the ch nee Ssure ¢ to de]lve,- th
If there’s 0°¢ s en(g\ s like they ar¢ e enwm tech debt policy o/t eall Vague ¢ *opp ”Shing us fi “We el them there’, “nex
ow much everyon ¥ ve"mev say. “Weshould M2 e, thisis harrt! What the #$%k is Tech Debt? €rms, scy Pego, T new feqy, r €re’s too
»We have 100 much of it! - ;nud‘ of our system s legacy I ask during interviews “What is the definition of tech debt?” surprisingly d the . ats and bOOge S
company!” SO™e a(gue;‘ . jte it atl- ¢ good software engine every candidate has a different answer. It seems like the industry hasn’t e €rm ft’t‘f'ml't"al dep, Ymen, j¢ 171des th
tech debt” they dema“("‘s the one and only pane © god'mg utopia. converged. I classified the responses into the following categories: SO, Tnvro ¢ Used f r'som ¢ C’U]p]exl Y of rear:
[t seems like ‘9°“n‘*;?0 getridofite could reach € it L A differen, , ings i eality,
dif we were © Pichad 4, that they,
s People Best Practices Unfinished Migration " et rnu.f;ﬂnfley ve becom
code nobody wants tomodify code that is not tested code that is not typed Tead g,

(javascript vs typescript)

Assets
in Software Engineering

- L 2 g
C ' MI “ =0 ‘?Q@_ '-
“ €% & > @9@ L

SOUBCE CTORA PROJCCMILNINT

bit.ly/techdebt2025

Assets
in Software Engineering

Assets are artefacts that:
* Are used frequently during software’s life cycle

* Have potential or actual value for the
organisation

Fa R o 'Ilé ..
Sl -4 I
r

_ SOURCE CODE

S

SOURCE CTORA

— f
—_—
—

-0 t=t—}
.

' PROJCCMILNENT

MANARAGEN

.‘
-
¢

Quality Matters

Continuously controlling and ensuring
quality is justified by continuous use.

intended to be used 46 time used
more than once !

Assets 1 | Not Asset

Artef :
rtefacts [e.g., Code ' e.g., Test Result

Asset Degradation

Degradation is the loss of

Software Value Map

value that an asset
suffers due its
manipulation.

Khurum, M., Gorschek, T., & Wilson, M. (2013). The
software value map—an exhaustive collection of value
aspects for the development of software intensive

products. Journal of software: Evolution and
Process, 25(7), 711-741.

]

VP1:Customer

I

VA1.1:Perceived value]—l
———SVA1.1.1: Intrinsic value

VA1.2: Customer life time
value

—#VC1.1.1.1: Functionality

- VE1.1.1.3: Usability

=—#VC1.1.1.2: ReBability |

W C 1.1.1.4: Maintainability

VC12Z1 R ion rate

SVA1.2.2: Revenue
VC1.2.2.1: Autonomous
revenue

VP2:Financial
L— E VC 2.1: Shareholder value

Software Value Map

[

l

VA3.1:Production value
VC 3.1.1: Market requiremaents
value
SVA 3.1.2: Phiysical value

f—— VC 3.1.2.1: Physical value wrt. Time

VP3:Internal VP4: Innovation and
business learning
| VA32: Differentiation value | VA4.1: Inteliectual VA4.2: Value of o W
. capital value technology - Innovation value
SVA 3.2.1: Differentistion wrt. ——— for market

parcelved value
SVA 3.2.1.1: Intrinsic value
VC 3.2.1.1.1: Functionality 2

VC 3.2.1.1.2: Reliability 0—{

VC 3.2.1.1.3 Usabllity 4—1

b VC4.1.1: Human
capital value

capital value

pripe WEA.2.1: Intrinsic
wvalue of technalogy

3 VC4.1.2: Customer

b VC4.3.1:Market
value size

i VC4 2.2 Application
value of technalogy

bpp VC4.3.2: Market
wvalse type

Asset Degradation

Degradation is the loss of value
that an asset suffers due its

manipulation.

Deliberate

Degradation

Unintentional

Entropy

1

Over-simplification
of role structures

Organisation
Structure

EX

(e.g. Teams'

Constellation Document)

4

Unofficial roles
in organisation

7

Outdated document
due to company growth

2 5 8
Intentionally leavin Diagram i
N Activity enfionaty e.aVI 9 Usage of outdated 'agram IS)
- . some details ; non-representative
Diagram terminology
for later of actual system
3 6 9
Suboptimal solutions Code clones are introduced
. Technology change
{ } Code to achieve immediate unintentionally by an .
and evolution

goals (TD)

inexperienced developer

Propagation of Degradation &

When an asset is degraded, it is
likely to influence the value of
other assets that depend on the
degraded asset.

- ™ .
b 4 q°
. f (.
e 7 '
' : ~ 4L «
£ <~ o G \ :
g /
P2 G .
V.1

Propagation of Degradation giﬁf*{zg%
ok

Requirements impact subsequent S
Software Development Activities

INSTITUTE OF

Whe TECHNOLOGY

likely

othe

degr: @
Interview Transcripts Requirements
Competitor Analysis

SERT Conference on Software Engineering 2024

Source Code

Degradation

v

Propagation of Degradation

) TEsT cAsE
0——
—
s

=Y

Test Case

A. Sundelin, J. Gonzalez-Huerta, and K. Wnuk, "The Hidden Cost of Backward Compatibility : When Deprecation Turns into Technical Debt - An
Experience Report," in TechDebt 2020, 2020, pp. 67-76

Propagation of Degradation ¢

From Technical Debt
To Asset Management

e Asset Management is the
administration of assets and the
activities that are related to creating
and maintaining them as well as
controlling their quality.

 TD implies the “debt” you owe given
the degradation.

e We want to move from Technical Debt
to Asset Management.

Puzzling it all together... e

40
30
)
=
=
8 20
| ||||||IIII||||

Puzzling it all together... St

Component C2 ®

100 0.5

o
o

>
T £
Q 0
= =
o Q
@ 60 - 030
O —
s [
e Q
= S
o ©
'5 40 4 0.2 Y
= £
Q]
= @

~N
o
1
o
—

Puzzling it all together
in one place

 Asset telemetry dashboard. \/\/\/\/
* Monitor assets based on -\/\/ . |
different metrics important e . I ' I ' | I
for each organisation. S

* Better decision-making with Al - m R
« Create projections of how - \«

things are going - better o

oooooooooo

estimation based on
assets’ history and other
organisational inputs. T

|dentify Assets

Where to Begin?

ldentify Metrics
& Measurements

Create A Map of
Assets for Organisations

Taxing
Collaborative
Software
Engineering

The Challenges for Tax
Compliance in Software
Engineering

Michael Dorner., Blekinge Institute of Technology
Maximilian Capraro.. Oliver Treidler, and Tom-Eric Kunz, Kolabri

Darja Smite® and Ehsan Zabardast.. Blekinge Institute of
Technology

Daniel Mendez., Blekinge Institute of Technology and fortiss

Krzysztof Wnuk®, Blekinge Institute of Technology

CSHUTTERSTOCK COMUULSIST

Digital Object Identifier 10.1109/MS.2023.3346646
Date of publication 25 December 2023; date of current version 12 June 2024.

Other implications

The engineering of
complex software systems
is often the result of a
highly collaborative effort.
However, collaboration
within a multinational
enterprise has an
overlooked legal implication
when developers
collaborate across national
borders: It is taxable. In
this article, we discuss
the unsolved problem
of taxing collaborative
software engineering
across borders.

He’s spending a year dead for
tax reasons.
—Douglas Adams, The
Hitchhiker’s Guide
to the Galaxy

MODERN SOFTWARE SYSTEMS
are often too large, too complex, and
evolving too fast for single developers
to oversee. Therefore, software engi-
neering has become highly collabora-
tive. Further, software development
is often a joint effort of individuals
and teams collaborating across bor-
ders, especially in multinational com-
panies with their subsidiaries spread
around the globe.! However, collab-
oration has a legal implication if in-
dividuals collaborate across borders:
The profits from those cross-border
collaborations become taxable.

In this article, we describe the complex-
ity of applying the established interna-
tional taxation standards required and

JULY/AUGUST 2024 | IEEE SOFTWARE 143

Exploring the Factors that Impact The Half-life
of Software

Krzysztof Wnuk!, Theresia Harrer*, Piotr Tomaszewski?, and Ehsan
Zabardast!

! Blekinge Institute of Technology, Sweden
krw@bth.se, ehsan.zabardast@bth.se,
? RISE Research Institutes of Sweden,
piotr.tomaszewski@ri.se,
® Hanken School of Economics, Helsinki, Finland
theresia.harrer@hanken.fi,

Abstract. This vision paper explores the factors that impact the aging
and depreciation of software. Based on the exploration of related work in
software aging, software anti-aging, the financial aspect of technical debt
and accounting of intangible assets, we postulate that a more holistic
approach towards obsolescence should be taken as most research focuses
solely on the technical aspects of software aging, leaving the business and
accounting aspects greatly unexplored.

Keywords: software aging, software half-life, software technical debt

1 Introduction

Software business is fiercely competitive with rapidly changing market trends,
customer needs and technologies [7]. The intangible and flexible nature of soft-
ware makes it a suitable mechanism to respond to these changes, however at
the risk and cost of rapid obsolescence and aging of produced software artifacts.
Software aging is not a new concept, it was discussed in 1994 by Parnas, who
claimed that nroerams like peonle ecet old despite software nroerams beine math-

... Reuters World v US Election Business v Markets v Sustainability v Legal v Breakingviews vV Technology v More vV

Technology | Government | Corporate Governance | Tax

Microsoft says US has asked for $28.9
billion in audit dispute

By Stephen Nellis

October 12, 2023 12:55 AM GMT+2 - Updated a year ago ‘ D ’ ‘ Aa ’ ‘ < 1

————————

A man stands inside the Microsoft Experience Center in New York City, U.S., January 18, 2023. REUTERS/Shannon Stapleton Purchase
Licensing Rights (]

https://www.reuters.com/technology/microsoft-receives-tax-notice-irs-2023-10-11/

Rolling in the Debt:
From Technical Debt
To Asset Management

Dr. Ehsan Zabardast

More info and Survey on Technical Debt

o
g&e

bit.Iy/techdethOZS/-

	Main Section
	Slide 1: Rolling in the Debt: From Technical Debt To Asset Management
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Technical Debt In Theory
	Slide 8: Technical Debt In Theory
	Slide 9: Technical Debt In Theory
	Slide 10: Technical Debt In Theory
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Technical Debt Research
	Slide 15: Technical Debt Management Research
	Slide 16: Technical Debt Management Research
	Slide 17: Technical Debt Management Research
	Slide 18: Technical Debt Management Research
	Slide 19: Technical Debt Facts
	Slide 20
	Slide 21
	Slide 22: Assets in Software Engineering
	Slide 23: Assets in Software Engineering
	Slide 24: Quality Matters
	Slide 25: Asset Degradation
	Slide 26: Asset Degradation
	Slide 27: Propagation of Degradation
	Slide 28: Propagation of Degradation
	Slide 29: Propagation of Degradation
	Slide 30: Propagation of Degradation
	Slide 31: From Technical Debt To Asset Management
	Slide 32: Puzzling it all together…
	Slide 33: Puzzling it all together…
	Slide 34: Puzzling it all together…
	Slide 35: Puzzling it all together in one place
	Slide 36: Where to Begin?
	Slide 37: Other implications
	Slide 38
	Slide 39: Rolling in the Debt: From Technical Debt To Asset Management

