

Leveraging AI for the classification of SE artifacts

- industrial cases working with defect reports

Work by: Muhammad Laiq, <u>Nauman bin Ali</u>, Emelie Engström and Jürgen Börstler

nauman.ali@bth.se

NAUMAN BIN ALI

• Senior lecturer (Docent) at Blekinge Institute of Technology, (BTH) Karlskrona

• Moved to Vallentuna (30 kms north)

• Research interests

- Test flakiness

about:

decision support

- Test case and suite quality

- Visual and data analytics for

- Levering test results for decisions



Defect report

- bug report,
- trouble report,
- issue report,
- failure report,
- error report,
- incident report,
- problem log

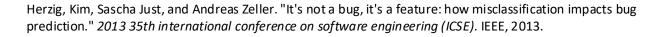
Description of a mismatch between the experienced and expected behavior of a system

Not all defect reports are equal

Type of solution required:

- Code correction to fix an error in the implementation
- Documentation update to fix an error/clarification in the description of features
- Training and education to improve awareness of the systems
- New feature development requires a decision where the functionality should be added to the system

Who should be involved in the investigation and resolution of the bug report, and when?



Defect report classification

Why categorize:

Task	Classification
Should developers be involved?	Defect classification based on the type of resolution required. A solution may require a code change, customer or support personnel education, an update to the documentation, or requesting a new feature.

Table 6 Lead time (mean calendar days from submission to resolution) and median priority (A: High, B: Medium, C: Low) for valid (V) and invalid (I) bug reports

Product	Lead time (V)	Lead time (I)	Priority (V)	Priority (I)		
P1	~15	~18	С	В		
P2	~19	~16	В	В		
P3	~15	~13	В	В		

Not straight forward

- There are several review steps to filter and sort the defect reports manually.
- The sheer volume of defect reports in a large-scale product makes it difficult, time-consuming, and error-prone to identify this early on correctly.

Case	Product size	Code base age	People		Not requiring a code correction
P1	Large	10 + years	100	3300	13%
P2	Medium	10 + years	100	3400	16%
Р3	Small	8 + years	70	1000	18%
5 OSS projects	Small to medium	mix		5591	42.6%

Motivation for the use of AI-Based solutions

Classification: Supporting defect report *routing* by automatic and early assessment of the solution required for the reported defect.

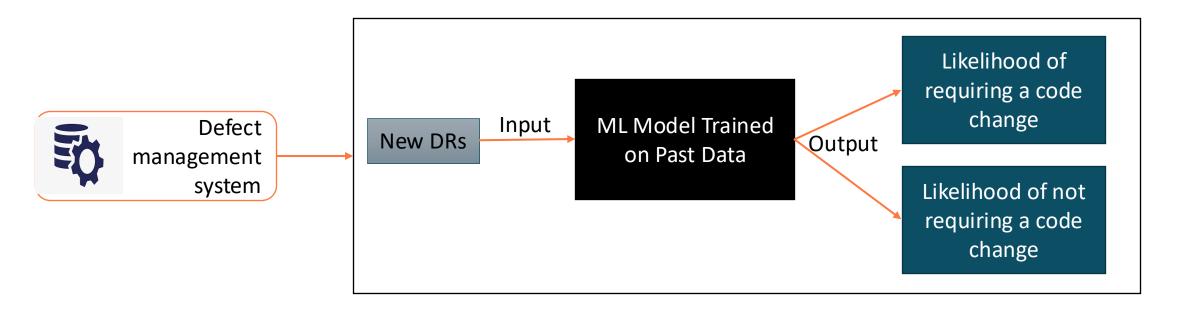
Understanding: Supporting automatic detection of themes in defect reports classes to gain *insights*. For example,

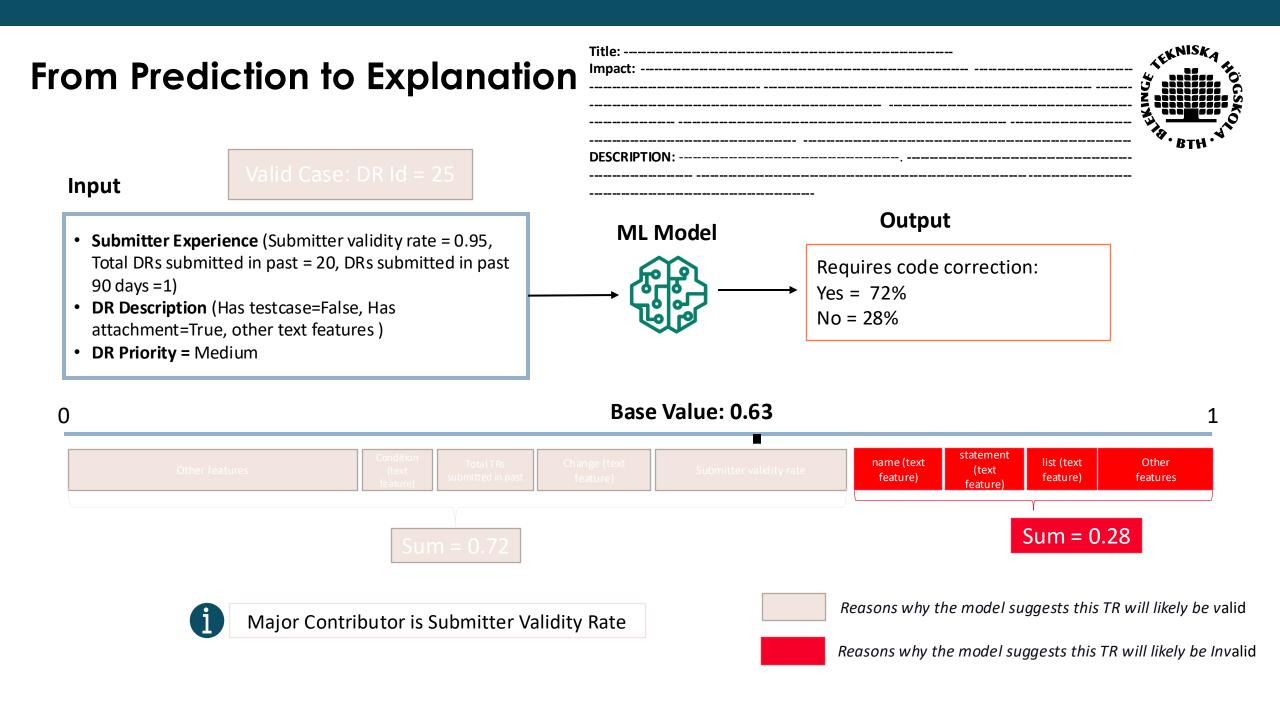
- Help identify common causes of bug reports, which practitioners can use to propose improvements.
- Help identify which features require better documentation.

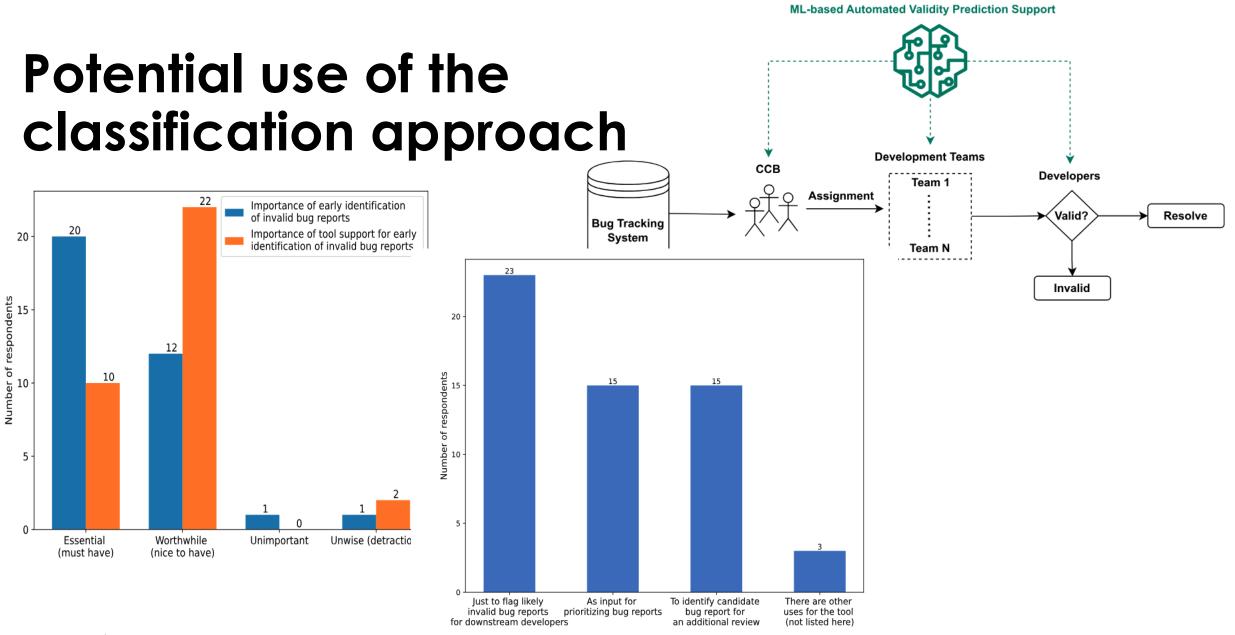
Al Methods for Classification of Defect Reports

Attributes							ML	techniques							
	NB	LR	SVM	SGD	KNN	RF	DT	AutoML-30	AutoML-60	AutoML-90	RoBEF	RTa			
Accuracy	++	++	++	++	—	+	+	+++	+++	+++	++-	÷			
Computational cost for training the models	+	+	+	+	+	+	+	_	_	_					
Generalizability	-	+	+	_			_		++	++	+				
Scalability	+	+	+	+	+	_	+	—	_	—	_				
Learning curve	-	_	—	—	—	_	—	+	+	+	_				
Explainability (global)	+	+	+	+	+	+	+	_	_	_	_				
Explainability (local)	-	_	_	_	_	_	_	_	_	_	_				
Maintenance of the	-	_	_	_	_	_	_	+	+	+	+				
model					_ Attribu	utes			I	ML techniques					
Availability of open-source tools	+	+	+	+	_	Ν	IB	LR SVM	SGD	KNN RF	DT	AutoML 30	- AutoML- 60	AutoML- 90	RoBERTa
Technical support	+	+	+	+	Accuracy (AUC) on three datasets										
					D1		.61	0.63 0.65		0.50 0.57	0.62	0.67	0.68	0.68	0.69
					D2		.81	0.81 0.80		0.73 0.72	0.71	0.86	0.87	0.88	0.84
					D3	0	.74	0.81 0.81	0.80	0.69 0.77	0.78	**	0.85	0.86	0.85

Classification approach





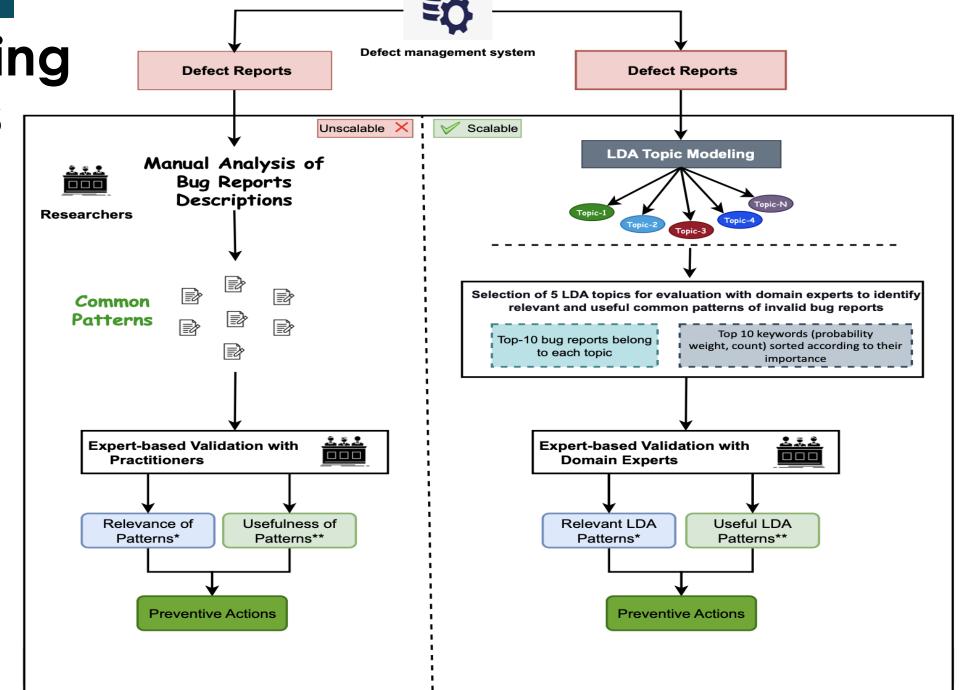


34 respondents

(b) Potential use cases of the tool support for identifying invalid bug reports

Understanding and insights

From having to review 3500 DRs to 50 DRs



Improvements suggested based on the analysis

- Features were identified where unclear documentation was leading to a number of defect reports.
- Additional review and onboarding for new and even experienced employees who are new to the product
- The use of the classification early in the process

TEKNISKA HOGS

Some take aways

Reliable tool support in classification

- Helps to improve productivity
- Provides a cost-effective (several solutions like AutoML are reducing the steep learning curves)
- Help to generate context-aware improvements backed by data-driven insights.
- Works on other artifacts pull requests, reviewer feedback

References

- 1. M. Laiq, N. bin Ali, J. Börstler, and E. Engström, "A data-driven approach for understanding invalid bug reports: An industrial case study," *Information and Software Technology*, vol. 164, p. 107305, 2023. Available: https://doi.org/10.1016/j.infsof.2023.107305.
- 2. U. Iftikhar, J. Börstler, and N. bin Ali, "On potential improvements in the analysis of the evolution of themes in code review comments," in the proceedings of the *49th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)*, 2023, pp. 340-348. DOI: 10.1109/SEAA60479.2023.00059.
- 3. M. Laiq, N. bin Ali, J. Börstler, and E. Engström, "Industrial adoption of machine learning techniques for early identification of invalid bug reports," *Empirical Software Engineering*, vol. 29, no. 1, p. 130, 2024. Available: https://doi.org/10.1007/s10664-024-10502-3.

Thanks!

Nauman bin Ali nal@bth.se